9 research outputs found

    On the Limitations of Model Stealing with Uncertainty Quantification Models

    Full text link
    Model stealing aims at inferring a victim model's functionality at a fraction of the original training cost. While the goal is clear, in practice the model's architecture, weight dimension, and original training data can not be determined exactly, leading to mutual uncertainty during stealing. In this work, we explicitly tackle this uncertainty by generating multiple possible networks and combining their predictions to improve the quality of the stolen model. For this, we compare five popular uncertainty quantification models in a model stealing task. Surprisingly, our results indicate that the considered models only lead to marginal improvements in terms of label agreement (i.e., fidelity) to the stolen model. To find the cause of this, we inspect the diversity of the model's prediction by looking at the prediction variance as a function of training iterations. We realize that during training, the models tend to have similar predictions, indicating that the network diversity we wanted to leverage using uncertainty quantification models is not (high) enough for improvements on the model stealing task.Comment: 6 pages, 1 figure, 2 table, paper submitted to European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learnin

    Hardening RGB-D Object Recognition Systems against Adversarial Patch Attacks

    Full text link
    RGB-D object recognition systems improve their predictive performances by fusing color and depth information, outperforming neural network architectures that rely solely on colors. While RGB-D systems are expected to be more robust to adversarial examples than RGB-only systems, they have also been proven to be highly vulnerable. Their robustness is similar even when the adversarial examples are generated by altering only the original images' colors. Different works highlighted the vulnerability of RGB-D systems; however, there is a lacking of technical explanations for this weakness. Hence, in our work, we bridge this gap by investigating the learned deep representation of RGB-D systems, discovering that color features make the function learned by the network more complex and, thus, more sensitive to small perturbations. To mitigate this problem, we propose a defense based on a detection mechanism that makes RGB-D systems more robust against adversarial examples. We empirically show that this defense improves the performances of RGB-D systems against adversarial examples even when they are computed ad-hoc to circumvent this detection mechanism, and that is also more effective than adversarial training.Comment: Accepted for publication in the Information Sciences journa

    Wild Patterns Reloaded: A Survey of Machine Learning Security against Training Data Poisoning

    Get PDF
    The success of machine learning is fueled by the increasing availability of computing power and large training datasets. The training data is used to learn new models or update existing ones, assuming that it is sufficiently representative of the data that will be encountered at test time. This assumption is challenged by the threat of poisoning, an attack that manipulates the training data to compromise the model's performance at test time. Although poisoning has been acknowledged as a relevant threat in industry applications, and a variety of different attacks and defenses have been proposed so far, a complete systematization and critical review of the field is still missing. In this survey, we provide a comprehensive systematization of poisoning attacks and defenses in machine learning, reviewing more than 100 papers published in the field in the last 15 years. We start by categorizing the current threat models and attacks, and then organize existing defenses accordingly. While we focus mostly on computer-vision applications, we argue that our systematization also encompasses state-of-the-art attacks and defenses for other data modalities. Finally, we discuss existing resources for research in poisoning, and shed light on the current limitations and open research questions in this research field

    Energy-Latency Attacks via Sponge Poisoning

    Full text link
    Sponge examples are test-time inputs carefully-optimized to increase energy consumption and latency of neural networks when deployed on hardware accelerators. In this work, we demonstrate that sponge attacks can also be implanted at training time, when model training is outsourced to a third party, via an attack that we call sponge poisoning. This attack allows one to increase the energy consumption and latency of machine-learning models indiscriminately on each test-time input. We present a novel formalization for sponge poisoning, overcoming the limitations related to the optimization of test-time sponge examples, and show that this attack is possible even if the attacker only controls a few poisoning samples and model updates. Our extensive experimental analysis, involving two deep learning architectures and three datasets, shows that sponge poisoning can almost completely vanish the effect of such hardware accelerators. Finally, we analyze activations of the resulting sponge models, identifying the module components that are more sensitive to this vulnerability.Comment: Preprint;15 page

    Minimizing Energy Consumption of Deep Learning Models by Energy-Aware Training

    No full text
    Deep learning models undergo a significant increase in the number of parameters they possess, leading to the execution of a larger number of operations during inference. This expansion significantly contributes to higher energy consumption and prediction latency. In this work, we propose EAT, a gradient-based algorithm that aims to reduce energy consumption during model training. To this end, we leverage a differentiable approximation of the â„“0\ell _0 norm, and use it as a sparse penalty over the training loss. Through our experimental analysis conducted on three datasets and two deep neural networks, we demonstrate that our energy-aware training algorithm EAT is able to train networks with a better trade-off between classification performance and energy efficiency
    corecore